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Abstract. Pharmaceutical manufacturing processes consist of a series of stages (e.g., reaction, workup,
isolation) to generate the active pharmaceutical ingredient (API). Outputs at intermediate stages (in-
process control) and API need to be controlled within acceptance criteria to assure final drug product
quality. In this paper, two methods based on tolerance interval to derive such acceptance criteria will be
evaluated. The first method is serial worst case (SWC), an industry risk minimization strategy, wherein
input materials and process parameters of a stage are fixed at their worst-case settings to calculate the
maximum level expected from the stage. This maximum output then becomes input to the next stage
wherein process parameters are again fixed at worst-case setting. The procedure is serially repeated
throughout the process until the final stage. The calculated limits using SWC can be artificially high and
may not reflect the actual process performance. The second method is the variation transmission (VT)
using autoregressive model, wherein variation transmitted up to a stage is estimated by accounting for the
recursive structure of the errors at each stage. Computer simulations at varying extent of variation
transmission and process stage variability are performed. For the scenarios tested, VT method is
demonstrated to better maintain the simulated confidence level and more precisely estimate the true
proportion parameter than SWC. Real data examples are also presented that corroborate the findings
from the simulation. Overall, VT is recommended for setting acceptance criteria in a multi-staged
pharmaceutical manufacturing process.

KEY WORDS: acceptance criteria; multi-staged process; serial worst-case; tolerance interval; variation
transmission.

INTRODUCTION

Pharmaceutical manufacturing processes consist of a series
of unit processes or unit operations, referred to as stages in this
paper, to generate the active pharmaceutical ingredient (API).
For example, a process starts with a chemical reaction and is
followed by workup, filtration, and crystallization to isolate the
API. The quality attributes of the API are affected by the earlier
stages. To assure that the final drug product meets its quality
requirement, the in-process control (IPC) and theAPI need to be
controlled within their respective specified acceptance criteria.

Several works have been published for calculating accep-
tance criteria (1–3). These employ some type of a statistical
interval (confidence, prediction, and tolerance) to incorporate
process average and process variability. These works, however,
are applied to only a single-unit operation. Methods applicable
to a process with sequential unit operations are of interest.

Per the ICH Q6A Justification of Specifications, one of
the sources from which acceptance criteria may be established

is relevant process development data. Process development
usually entails exploratory screening, optimization, and
robustness studies using factorial experiments. These design-
of-experiments (DOEs) type of studies purposely vary input
materials and process parameters relevant to a stage to
determine their effect on the output. Separate DOE studies
are typically performed at each stage for ease of execution.
An example process development DOE scheme of a k-staged
process is diagrammed in Fig. 1.

The monitored quality attributes are impurities which
are either generated from side reaction of the reactants,
transformed from one isomer to another, or carried across the
stages as inert chemical species. For a well-defined pharma-
ceutical manufacturing process, the pathways that impurities
follow across the stages are known. Hence, it is possible to
track a particular impurity at each stage and infer empirical
relationships between Yi and Yi−1 and/or PPij’s, whether the
impurity remains untransformed or does undergo some
chemical transformation.

Given a dataset generated from a scheme such as Fig. 1,
the key question is how should variation from a previous
stage be taken into account in setting acceptance criteria for
subsequent intermediate stages and ultimately for the final
stage? A simplified risk minimization strategy practiced in the
industry is referred to in this paper as serial worst case (SWC)
approach. This entails determination of maximum output
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level for Yi that would be expected to be generated at stage i
by calculating an upper limit of a statistical interval when
input starting materials and process parameters are set at
their worst-case settings. Since the monitored quality attri-
bute is an impurity, the higher its output level, the “worse” it
is from a safety perspective. The maximum (worst) expected
output of stage i is then carried over as input material to stage
i+1 wherein again the process parameters are fixed at worst-
case settings. This procedure is serially repeated from one
stage to the next until the final kth stage, hence the name for
the approach. The calculated upper limits of statistical
intervals at intermediate and final stages are then used as
basis for establishing IPC and API acceptance criteria.
Although the SWC does result in deriving acceptance criteria
with minimized risk of excursion, the calculated limits can be
artificially high and may not reflect the actual process
performance. An alternate, more realistic approach to SWC
is needed to establish statistically-based acceptance criteria
for each stage of the process.

Several papers studying variation in product quality
attributes as it moves through multiple stages of manufacturing
process have been published. The terminologies introduced and
the particular industries the works have been applied to are:
variance synthesis (4,5); stream of variation in automotive body
assembly (6); variation transmission using autoregressive model
in automobile manufacturing (7); variation propagation using
state space model in machining processes (8); and variation
transmission in ceramic tile manufacturing (9).

In this paper, the concept of variation transmission (VT)
by (7) is combined with tolerance interval calculations as a
proposed method to derive acceptance criteria for a multi-
staged process. The method is presented in the context of
having generated process development data using but not
limited to factorial experiments at each process stage. The
paper is subdivided into the following: (1) introduction of
variation transmission model in a generalized k-staged
process; (2) brief review of tolerance interval concept; (3)
simulation study and real data examples to compare tolerance
intervals calculated using SWC and the proposed VT.

METHODS

Variation Transmission in a k-Staged Process

Consider the diagram of a k-staged manufacturing
process depicted in Fig. 1. At each stage, factorial DOE

would have been performed during process development.
Assuming the quality attribute of the output (Yi) is linearly
correlated to the input starting material (Yi−1) and the process
parameters (PPij’s), the multiple linear regression equation
(Eq. 1) applies:

Yi ¼ ai þ biYi�1 þ
Xk

i¼1

Xmi

j¼1
g ijPPij þ ei ð1Þ

where subscript i refers to ith stage (i=1,…, k); subscript j refers
to jth process parameter in stage i (j=1, …, mi; where mi is the
number of process parameters studied at stage i); αi is the
intercept; βi and γij are the regression coefficients for Yi−1 and
PPij predictor variables, respectively. For the purpose of
introducing the concept of variation transmission, the simple
casewhere onlyYi−1 influences Yi is first presented (i.e., γij's=0).
This case may occur in a process robustness study wherein the
ranges of the PPij’s are chosen such that varying the PPij’s within
this range have no statistically significant effect on Yi. The
quality of the input starting material Yi−1 almost always
influences Yi based on mass balance principles. Other cases
where both Yi−1 and PPij’s influence Yi and also where neither
influences Yi will be presented later in the Real Data Examples
section.

For the case considered in this section, it can be modeled
by a simple linear regression:

Yi ¼ ai þ biYi�1 þ ei ð2Þ
with Y0 � N �0; �

2
0

� �
. Equation 2 is an example of a first-

order autoregressive model in which the distribution of Yi

depends only on Yi−1 (10). The errors at each stage, ei’s, are
assumed to be independent of each other (recursive error
structure) and normally distributed N(0,�2i;A ). The expected
value and variance of Yi are:

EðYiÞ ¼ �i ¼ ai þ bi�i�1 ð3Þ

VðYiÞ ¼ �2
i ¼ b2i �

2
i�1 þ �2i;A ð4Þ

Equation 4 estimates variation transmitted through the
ith stage of the process. The first term (b2i �

2
i�1 ) on the right-

hand side is the variation transmitted to Yi from stage i−1,
while the second term (�2i;A ) is the variation added at stage i.
The regression coefficient (βi) is a measure of the extent of
variation transmission. By using Eq. 4 recursively, the

Fig. 1. Diagram of sequential k-staged manufacturing process where separate DOE studies
are performed at each stage. Notations: Yi=monitored quality attribute (e.g., impurity
level); PPij= jth process parameters (e.g., temperature, pressure) studied at ith stage; ei=
error at each stage
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variation transmitted through the final kth stage can be
generalized as:

�2
k ¼ b2kb

2
k�1�

2
k�2 þ b2k�

2
k�1;A þ �2k;A ð5Þ

Tolerance Interval

A tolerance interval is an interval expected to contain at
least a specified proportion, p, of the population with a
specified degree of confidence, (1−α). Since tolerance
interval estimates the capability limits of a process manufac-
turing products in large quantities (11), this type of interval is
appropriate for setting acceptance criteria. An upper toler-
ance limit for a univariate linear regression model of the form
shown in Eq. 6 (12) is used in this paper.

one‐sidedðp; 1� aÞ tolerance interval

¼ �1; x0
_

b þ kðxÞS
h i

ð6Þ

where x0
_

b is the predicted mean in vector notation of the
ordinary least squares regression; k(x) is the tolerance factor
which is dependent upon proportion p, confidence level (1−α,
and sample size n), and can be calculated from (13) or
obtained from statistical textbooks; S is an estimate of
variability.

Applications of Eq. 6 to set acceptance criteria via SWC
and VT differ slightly by virtue of how the respective methods
work. To illustrate and contrast the difference, the resulting
tolerance interval calculations for the two methods are
written out for a k=3 process in Table I. For example, using
SWC at stage 2, the predicted mean ðba2 þ bb2TIY1Þ is
evaluated at the maximum output level of stage 1 (TIY1) but
S used is variation contributed solely by stage 2 (b�2;A ). In
essence, the variation from stage 1 is incorporated to stage 2
via the calculated TIY1 (i.e., the maximum or worst-case
scenario from stage 1). Using VT at stage 2, the predicted
mean ðba2 þ bb2b�1Þ is evaluated at the predicted mean of stage
1 ðb�1 ¼ ba1 þ bb1Y0Þ but S used is the total variation
transmitted up to stage 2 (b�2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibb22b�2
1 þ b�2

2;A

q
).

Simulation Study

A computer simulation experiment is performed to
compare tolerance limits at each of process stages calculated
using SWC and VT. The process considered is Fig. 1 with k=3
and no effects of process parameters PPij’s (i.e., γij's=0).
Conditions of varying extent of variation transmission (βi=0.1
or 1.0) and varying stage variability (σi,A=0.1 or 1.0) are
simulated. The selected (βi,σi,A) combination is assumed to

apply to each of the k stages. Since this work is presented in
the context of having performed some process development
studies, sample sizes (n=10, 40, 80) are used. These values are
typical number of experimental units performed during
process development of a pharmaceutical drug. The simulated
scenarios are tabulated in Table II.

The specific steps followed in the simulation are: (a)
specify arbitrary values for intercepts (αi=1) and input
starting material quality (Y0=5) in Eq. 2; (b) select (βi,σi,A)
combination applied to each of the k stages; (c) simulate Yi’s
at each (βi,σi,A) combination using the RANNOR random
number generator function in SAS taking into account the
autoregressive relationship (i.e., output in stage 1 becomes
input for stage 2, etc.); (d) perform ordinary least squares
regressions (Eq. 2) at each stage; (e) construct upper one-
sided (p=0.99, 1−α=0.95) tolerance intervals at each stage
for SWC and VT using formulas in Table I; (f) repeat steps c
to e 2,000 times.

The metrics for the simulation study are: (1) confidence
coefficient, which is empirically derived as the fraction of
constructed tolerance intervals that correctly contain at least
the true proportion (p=0.99) of the simulated population and
(2) average tolerance interval length. The method with
confidence coefficient that is closer to the true confidence
level and with shorter average tolerance interval length is
deemed the better method.

Real Data Examples

Three cases of varying scenarios on extent of variation
transmission and on stage variability as well as different
number of process stages and correlation (or lack thereof) of
Yi with Yi−1 and/or PPij’s are presented to further illustrate
the simulation findings. The description of each case is
presented in more detail in the next section along with the
calculations using Eq. 1 and the formulas in Table I.

RESULTS

Simulation Study: Confidence Coefficient

Figure 2 presents the simulated confidence coefficients as
process stage progresses (Y1→Y2→Y3). The results are given
for the two methods (SWC and VT) and three sample sizes (n=
10, 40, 80) tested. The four panels correspond to the different
(βi,σi,A) combinations. Using the normal approximation to the
binomial, if the true confidence level is 0.95, a simulated
confidence level based on 2,000 iterations has only a 0.025
probability of being less than 0.94. A reference line at 0.94 is
drawn in the plots.

Table I. Tolerance Interval (TI) Calculations for k=3 Staged Process
Using Serial Worst-Case (SWC) and Variation Transmission (VT)

Stage SWC VT

1 TIY1 ¼ ðba1 þ bb1Y0Þ þ kb�1;A TIY1 ¼ ðba1 þ bb1Y0Þ þ kb�1;A
2 TIY2 ¼ ðba2 þ bb2TIY1Þ þ kb�2;A TIY2 ¼ ðba2 þ bb2b�1Þ þ kb�2
3 TIY3 ¼ ðba3 þ bb3TIY2Þ þ kb�3;A TIY3 ¼ ðba3 þ bb3b�2Þ þ kb�3

Table II. Simulated Scenarios Varying βi and σ1,Awith Each Combina-
tion Sampled at n=10, 40, and 80

Extent of variation
transmission (βi)

Variability at each stage (σi,A)

0.1 1.0

0.1
1.0
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At low extent of variation transmission (βi=0.1) for both
levels of variability (σi,A=0.1 and 1.0), the simulated confi-
dence coefficients for SWC at smaller sample sizes (n=10 and
40) fall further below 0.94 as stage progresses (Fig. 2, upper
left and right panels). VT approaches the simulated confi-
dence level for all σi,A and n levels as stage progresses. At
large size (n=80), the confidence level of both methods
improve and become comparable to each other.

At high extent of variation transmission (βi=1.0), SWC
exceeds 0.94, approaching or even reaching 1.0 for both σi,A

levels as stage progresses (Fig. 2, lower left and right panels).
VT also exceeds 0.94 at low variability (σi,A=0.1) but not as
severely as SWC; the exceedance is attenuated as sample size
is increased. At high variability (σi,A=1.0), VT effectively
maintains simulated confidence level with results approaching
0.94 as stage progresses for all sample sizes.

Simulation Study: Average Tolerance Interval Length

Figure 3 presents the average tolerance interval lengths as
process stage progresses. The average TI length is re-scaled by
subtracting from it the “true” 99th percentile of the simulated
N(ai þ biYi�1; �

2
i ) population. The smaller this difference is, the

more precise the estimate of the true proportion parameter. This
re-scaling makes it easier to graphically compare the two
methods across the four (βi,σi,A) simulated scenarios.

At low extent of variation transmission (βi=0.1), the
average TI lengths of SWC are longer than VT although only
slightly (Fig. 3, upper left and right panels). The difference
from the true proportion parameter is widened as stage
progresses, more so with SWC than with VT. As expected,
increased sample size improves the precision of the estimates.
These trends are similar between σi,A=0.1 and σi,A=1.0, only
differing by an order of magnitude in the Y-axis scale.

At high extent of variation transmission (βi=1.0), the
average TI lengths of SWC are drastically much longer
than VT (Fig. 3, lower left and right panels). The
disparity between the two methods becomes even more
pronounced as stage progresses. Again, improved preci-
sion is achieved by increasing sample size. Just like in βi=
0.1 scenario, trends between σi,A=0.1 and σi,A=1.0 are
similar in βi=1.0 scenario except for scaling of Y-axis by
an order of magnitude.

Taking together the results of the confidence coefficients
and average TI lengths for the scenarios tested, SWC is verified
to be a conservative method—it exceeds the simulated confi-
dence level, even reaching 1.0 as stage progresses, and it gives
longer tolerance limits thus less precise estimates of true
proportion parameter. In contrast, VT is more effective in
maintaining the simulated confidence level and provides more
precise estimates of true proportion parameter. These contrasts
in performance are especially observed when extent of variation
transmission is high and process stage variability is also high.

Real Data Examples

In this section, real data examples are presented to
further illustrate setting acceptance criteria using the SWC
and VT methods. The data comes from actual retrospective
historical data and/or prospective DOE studies that have
been slightly modified for proprietary reasons. The identities
of the chemical impurities measured in these studies are
blinded for confidentiality.

Case 1 is a three-staged process wherein the output of a
stage, Yi, appears to be influenced solely by its input material,
Yi−1. This is similar to the hypothetical case considered in the
simulation, only the estimates of σi’s and σi,A’s vary from
stage to stage. Case 2 is a two-staged process wherein Yi also

Fig. 2. Plot of simulated confidence coefficients as process stage progresses (Y1→Y2→Y3) for method (VT=variation transmission, SWC=serial
worstcase) and sample size (n) in each of (βi,σi,A) simulated scenarios. The reference line at 0.94 is the simulated confidence level
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appears to be influenced by Yi−1. In addition, two process
parameters PP21 and PP22 also appear to influence the output
of stage 2, Y2. Case 3 is a three-staged process wherein for
stages 1 and 3, the outputs Y1 and Y3 appear to be correlated
with their input materials, Y0 (upon log-transformation) and
Y2, respectively. However for stage 2, neither its starting
material Y1 nor any of its PPij’s appear to influence the
output Y2. This may occur, for example, in robustness studies
wherein the goal is to demonstrate that within the selected
range of the input parameters, there is no significant effect on
the output. This may also occur when the process is

inherently variable such that any signal due to systematic
sources of variation could not be detected.

In all of these three cases, when systematic sources of
variation (Yi−1 and PPij’s) appear significant, they are modeled
in Eq. 1 as fixed effects. Modeling them as random effects is
probably more reflective of how these factors behave in real
applications. For example, the chemical impurity of interest Y0

contained in the starting material supplied by a vendor is likely
distributed as a normal random variable, N �0; �

2
0

� �
. Likewise,

the setting at which a process parameter PPij is actually operated
may also have some random distribution (e.g., uniform or

Fig. 3. Plot of average tolerance interval lengths (less the true proportion p values of the simulated population) for process stages progresses
(Y1→Y2→Y3) for method (VT variation transmission; SWC serial worst case) and sample size (n) in each of (βi,σi,A) simulated scenarios

Fig. 4. Case 1 example: High extent of variation transmission, low-stage variability. Three-staged process where Yi’s appear correlated solely
with respective Yi−1’s
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Fig. 5. Case 2 example: Low extent of variation transmission, low-stage variability. a Stage 1 of a two-staged process where Y1 appears
correlated with Y0. b Stage 2 of a two-staged process where Y2 appears correlated with Y1 and process parameters PP21 and PP22
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triangular) within its normal operating range. The scope of the
current paper, however, is on how to account for random
sources of variation in each stage, σi,A. Therefore, in evaluating
the expected stage output Yi, the systematic sources of variation
are fixed at their worst-case scenarios (Y0 at input material
specification; PPij at the setting that gives the highest level of Yi),
in keeping with the overall risk minimization strategy. For
accounting for the stochastic nature of the systematic sources of
variation, the reader is referred to these papers (3,14,15).

Figures 4, 5, and 6 show the experimental data, the
predicted mean of the fitted regression model (solid line
generated from Eq. 1), and the constructed tolerance
intervals (dashed lines) using formulas in Table I for SWC
and VT methods. Estimates of the variation at each stage
(b�i;A ), and the total transmitted variation up to a stage
(b�i from Eq. 4) are also presented. Reference lines on X-
axis are drawn corresponding to the levels at which to
evaluate the input material Yi−1 to obtain the Yi tolerance
interval.

For case 1 (Fig. 4), the slopes of the regression lines at
each stage are all large bbi 0sQ 0:829

� �
. This exemplifies the

high extent of variation transmission scenario in the simula-
tion. The variabilities at each stage are relatively smallb�i;A0s � 0:029
� �

. The reference line in stage 1 (Fig. 4a) is
0.15 corresponding to Y0 specification. The predicted meanb�1 Y0¼0:15j ¼ 0:166 and the calculated TI=0.24. This value is
identical for both SWC and VT methods at stage 1 since it is
assumed that the total transmitted variation up to the first
stage equals the variation at that stage (i.e., b�1 ¼ b�1;A ). For
stage 2 (Fig. 4b) using SWC, Y1 is evaluated at the worst-case
output of stage 1 (TIY1_SWC=0.24) and using variation at
stage 2 (b�2;A ¼ 0:022 ), the calculated TIY2_SWC=0.35. For
stage 2 using VT, the Y1 is evaluated at the predicted mean
output of stage 1 (b�1 ¼ 0:166 ) and using the total transmitted
variation up to stage 2 (b�2 ¼ 0:038 ), the calculated TIY2_VT=
0.31. This procedure is repeated for stage 3 (Fig. 4c) and the
calculated TI’s are 0.46 and 0.36, for SWC and VT,
respectively. For this case scenario of high extent of variation
transmission with low stage variability, the calculated TI at
the final process stage using VT is 0.1 lower than SWC.

For case 2 (Fig. 5), the slopes are relatively small bbi 0s �
�

0:198Þ and stage variability are also small b�i;A0s � 0:073
� �

.
The reference line in stage 1 (Fig. 5a) is 6.5 corresponding to
Y0 specification. At stage 2, PP21 and PP22 along with Y1

appear to significantly influence Y2. Figure 5b groups the
observations according to the PP2j settings (center points for
historical data and low–high factorial settings for DOE data).
PP2j’s are fixed at settings that give the highest value of Y2

(PP21=16 and PP22=0.75) as a risk minimization strategy. For
stage 2 using SWC, Y1 is evaluated at the worst-case output
of stage 1 (TIY1 SWC Y0¼6:5j ¼ 0:82 ) and using b�2;A ¼ 0:016 ,
the calculated TIY2_SWC=0.22. For stage 2 using VT, Y1 is
evaluated at the predicted mean output of stage 1
(b�1 Y0¼6:5j ¼ 0:607 ) and using b�2 ¼ 0:022 , the calculated
TIY2_VT=0.20. In this case of low extent of variation transmis-
sion and low stage variability, the calculated TI at the final
process stage using VT is 0.02 lower than SWC.

For case 3 (Fig. 6), the bbi ′s are 0.043, 0, and 0.924 for
stages 1, 2, and 3, respectively, and the b�i;A ′s are all relatively
low (≤0.025). The reference line in stage 1 is LN(1)=0
corresponding to natural-log-transformation of Y0=1 specifi-
cation (Fig. 6a). The apparent lack of correlation between Y2

and Y1 ðbb2 ¼ 0Þ or with any of the process parameters PP2j’s
(bg2j 0s ¼ 0 ) in stage 2 (Fig. 6b), may occur, as discussed
earlier, during process robustness studies or in a highly

variable process. With bb2 ¼ 0 , the total transmitted variation

up to stage 2 using Eq. 4 is b�2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibb22 � b�2

1 þ b�22;A
q

¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
02 � 0:0252 þ 0:0222

p
¼ 0:022 . This means that b�1 has

“zero” extent of transmission into stage 2 and only b�2;A
comprises b�2 . Since the regression model in stage 2 is no
better than the overall mean of the Y2 observations

(bY2 ¼ Y2 ¼ 0:057 ), the predicted mean will be 0.057
whether Y1 is evaluated at TIY1 SWC ¼ 0:20 or at b�1 ¼
0:133 . Because of this and since b�2 ¼ b�2;A , then the
calculated TIY2=0.12 is identical for SWC and VT. For
stage 3 (Fig. 6c) using the SWC method, Y2 is evaluated
at the worst-case output of stage 2 (TIY2 SWC ¼ 0:12 ) and

Fig. 6. Case 3 example: Variable (low, “zero,” and high) extent of variation transmission, low-stage variability. Three-staged process where Y1

and Y3 appear correlated with respective input materials but Y2 does not appear correlated with Y1 or any PP2j’s
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using b�3;A ¼ 0:014 , the calculated TIY3_SWC=0.17. For stage 3
using the VT method, Y2 is evaluated at the predicted mean
output of stage 2 (b�2 ¼ Y2 ¼ 0:057 ) and using b�3 ¼ 0:025 , the
calculated TIY3_VT=0.14. For this case of variable (low, “zero,”
and high) extent of variation transmission with low stage
variability, the calculated TI at the final process stage using VT
is 0.03 lower than SWC.

DISCUSSION

Simulation results indicate that at low extent of variation
transmission, at both low- and high-stage variability, and at
small sample size, SWC performs poorly relative to VT. With
increased sample size, the two methods become practically
comparable with the average TI lengths of VT only slightly
shorter than those of SWC. This trend is corroborated in the
low (or variable) extent of variation transmission, low-stage
variability real data examples (cases 2 and 3); VT is only
slightly shorter than SWC by 0.02 or 0.03.

The superiority of VT over SWC is especially demon-
strated in simulation of high extent of variation transmission
and high stage variability. In this scenario, VT more
effectively maintains the nominal confidence level and more
precisely estimates the true 99th percentile parameter than
SWC. The real data example case 1 involves high extent of
variation transmission but with low-stage variability. The
calculated tolerance limit for VT is 0.1 shorter than SWC
and had the stage variability been high, this difference would
have been much bigger.

An impurity is introduced in the pharmaceutical drug
manufacturing process either from its initial level in the
starting material or as a by-product of chemical reaction. If
the efficiency of the process in reducing/eliminating this
impurity is low (i.e., poor purging), its level going into a
stage will approximately remain unchanged from the previous
stage. This chemical specie mass balance is a manifestation of
high extent of variation transmission which is not uncommon
in pharmaceutical drug manufacturing process. The high
extent of variation transmission, specifically coupled with
high-stage variability, is where the industry practice
method SWC performs particularly poorly as shown in
the simulation. Setting impurity control limits that exceed
the true capability of the process, even by small exceed-
ances, as can be the case using SWC, may have critical
implications on the safety of the drug in human patients.
Thus, it becomes more imperative to set a more realistic
basis for setting control limits by properly accounting for
transmission of variation through a multi-staged process
using the VT method.

Generalization of Calculation Procedure

The variation transmission concept presented in the
simulation and real data examples can be generalized into
practical, procedural steps for setting acceptance criteria: (1)
screen for the pertinent sources of variations at each stage of
a multi-staged process using available studies (e.g., process
development data including retrospective historical database
and/or prospective factorial DOE studies), (2) estimate
effects of systematic and random sources of variation at each
stage from the fitted regression model (Eq. 1), (3) estimate

total variation transmitted up to stage i using Eq. 4, (4)
calculate upper one-sided tolerance limits for each quality
attribute at each stage using Eq. 6 wherein S is estimated
from step 3, (5) use the calculated tolerance limits as the basis
for setting acceptance criteria in the intermediate and the
final stages.

CONCLUSION

This paper addresses the question of how variation in
previous stages of a multi-staged pharmaceutical manufactur-
ing process can be appropriately accounted for in subsequent
stages. The end goal is establishing a method for setting
statistically-based acceptance criteria for intermediate and
final stages of the process. Computer simulations are used to
compare serial worst case (SWC) and variation transmission
(VT) approaches in terms of maintaining the simulated
confidence level and estimating the true proportion parame-
ter. When the extent of variation transmission is low, SWC
performs poorly but with increased sample size, it is
practically comparable with VT. When the extent of variation
transmission is high and especially when stage variability is
high, VT is the superior method. The real data examples
which considered various cases of extent of variation trans-
mission, stage variability, and apparent correlation (or lack
thereof) of output with input and/or process parameters
corroborate the findings from the simulation. Therefore,
variation transmission (VT) approach is recommended for
setting acceptance criteria in a multi-staged pharmaceutical
manufacturing process.
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